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Abstract-The transfer of radiant energy in an atmosphere having spherical symmetry is discussed. 
As an application, the transfer between two concentric spheres (having black surfaces) kept at different 
uniform temperatures and separated by an absorbing and emitting gas with a constant absorption 
coefficient is studied. The temperature in the gas along a radius satisfies a Fredhohn integral equation 
of the second kind. Exact solutions are obtained by a numerical method and limiting solutions 
training to optically thick and thin conditions are given in closed form. The temperature distri- 
bution along a radius depends strongly on the temperature ratio of the two surfaces, the absorption 

coefficient, and the radii of the spheres. 

INTRODUCTION 

TFIE TRANSFER of radiative energy in plane- 
parallel atmospheres has been studied in great 
detail and reported in the astrophysical litera- 
ture [I, 21 and in literature dealing with heat 
transfer [3]. In particular, the problem of radi- 
ative transfer between two infinite parallel 
plates kept at two different temperatures and 
separated by an absorbing and emitting gas has 
recently received much attention [4-71. 

Problems of transfer in atmospheres with 
spherical symmetry have received compara- 
tively little attention. However, certain aspects 
of such problems are discussed by Chandrasekhar 
[I]. Because transfer in atmospheres with spheri- 
cal symmetry is important in many applications, 
a brief treatment is given in the first part of this 
paper to extend the theory to this case. In this 
analysis, formulas are given for the specific 
intensity, the rate of absorption, the rate of heat 
input to the gas per unit volume, and the rate of 
radiant flux. The formulas are subsequently 
applied to the problem of transfer between two 
concentric spheres (having black surfaces) kept 
at different uniform temperatures and separated 
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by an absorbing and emitting gas with a constant 
absorption coefficient. The integral equation for 
the temperature distribution between the two 
spheres is solved numerically, and exact limiting 
solutions are given in closed form. 

Problems of this nature can arise in connec- 
tion with the study of intense explosions. The 
temperature field created by a sphere of hot gas 
appearing as a black spherical body and the 
associated heat-transfer rates are thus of im- 
mediate interest. 

Subsequent to the completion of the present 
work, the author received a paper by Sparrow, 
Usiskin and Hubbard [8] that does, in fact, 
consider the problem of transfer between two 
concentric spheres. In their analysis, the spheres 
have the same temperature, and internal heat 
generation is assumed in the gas. Therefore, in 
the problem considered here, different boundary 
conditions are used; furthermore, the methods 
of the present paper are formally different from 
those of Sparrow, Usiskin and Hubbard. A more 
detailed analysis of the present problem is given 
in reference [9]. 

SPECIFIC -NSZTY OF RADIATION IN A 

SPHERICALLY SYMMETRIC A~OS?~ 

Consider a spherically symmetric atmosphere 
consisting of an absorbing and emitting gas 
characterized by the absorption coefficient K,. 
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All thermodynamic variables in the atmosphere, 
such as the temperature and the density, are 
functions of a single variable r, the radius vector 
measured from the center of the atmosphere. In 
general, x, depends on the thermal state of the 
gas and is consequently also a function of r. In 
dealing with the transfer of radiant energy 
within such an atmosphere, the expression is 
needed for the specific intensity 1, (or simply, 
the intensity) of the radiation at a given point r 
in a given direction. If no incident radiation from 
the outside falls on the atmosphere, the intensity 
will be a function of r and the inclination 0 to 
radius vector. In terms of these two variables, 
the equation of transfer can be written [l] 

8” sin 0 aZ, 
cos 0 -Y$ - T 26 = -xy(r)[Z,(r, 0) - B,(r)] 

By introducing the Cartesian coordinates x and 
y the integration of equation (1) can be performed 
along lines of constant y (Fig. 1). At the point r 
we distinguish now between the intensity in the 
positive and the negative x-direction, and denote 
these two intensities by IT(r, @) and I;(r, O), 
respectively (Fig. 1). Furthermore, let us assume 
that the atmosphere is bounded and does not 
extend beyond a radius r = R. The nature of the 
boundary need not be considered at this point. 
It is sufficient only to identify the intensity in the 
positive x-direction at the point 

x = -[Rs - rs sine i?]” 

on the boundary with I:@, O), and similarly, 
the intensity in the negatrve x-direction at the 

point x = +[R2 - r3 sins @]a on the boundary 
with I;@, 0). The formal solution to equation (1) 
for fy+(r, 8) can then be written 

Z+(r, 6) = Jy+(R, 0) exp [ - T,,(x, - XR)] Y 

+ j x,(r)B,(f) exp [- ~“(x, _?)I da (2) 
-xlS 

where 

? = f.9 + r2 sin2 034, XR = [Re - r2 sin2 814, 

and rV(x, R) is the optical depth along y = 
r sin 8 = const. between two points with co- 
ordinates J? and x. Thus for T”, we have the 
definition 

7,(x, 2) = 7 x,(r’) dx’ (3) 
.z 

where r’ = [x’z + r2 sin2 016 (Fig. 1). For I;(r, 0) 
one has a similar formula. The atmosphere is 
taken to be in local thermodynamic equilibrium; 
hence, the source function B,(r) in equations (1) 
and (2) is the Planck function. 

It is convenient to choose the radius vector as 
the integration variable rather than the x-variable 
occurring in equations (2) and (3). In performing 
such a transformation, we can write I;‘-(r, 8) in 
the form 

FIG. 1. Definition of I,*@, 8) in the spherically symmetric atmosphere. 
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It also follows that I;-@, 0) takes the form 

Z;(r, 0) = Z;(R, 0) exp [. - (7VR - 9)1 

where 

I 

rlv(r9 To) = 
s 

r’x,,(r’) dr’ . 
(r/2 _ +p’ 

Qg : j,(R; To), +jP = rlv(C To) 

and r0 = Y sin 0 

These equations represent general expressions 
for the intensity in a spherically symmetric 
atmosphere, which will be used in the present 
study. 

RATE OF ABSORPTION AND EMISSION IN THE 
ATMOSPHERE 

Consider next the rate of absorption at the 
point r due to the surrounding atmosphere. The 
rate of absorption A,, per unit volume at a point 
is given by 

A, = xV4{ZVd8 (6) 
0 

where the integration extends over all of the 
elements of solid angle dJ2 about the point in 
question. Accordingly, a spherical polar co- 
ordinate system is centered on the point r, and 
the element of solid angle can be written as 
CtR = 2~ sin 8 de. It follows that A, can be 
expressed as 

A,, = 27ixynf[Z,f(r, 0) + Z;(r, e)] sin 8 de (7) 
0 

The rate of emission E,, per unit volume at a 
point for an atmosphere in local thermodynamic 
equilibrium is expressed by 

E, = ~,R,U’) (8) 

The equation governing the radiative transport is 
then 

Q = 4 (A, - E,) dv = 0 
0 

(9) 

where Q is the net rate of heat input to the gas 
per unit volume as the result of radiation. 
Conservation of energy requires this quantity to 

be zero in the assumed absence of convection 
and molecular transport phenomena. 

Finally, we observe that, if the boundary of 
the atmosphere is a black wall, the intensities 
ZY+(R, 0) and Z;(R, 0) are given by 

z+(R, e) = I;-(R, e) = B,(T~) Y 

where TO is the uniform temperature of the black 
sphere surface with radius R. 

EQUATION FOR TEMPERATURE DISTRIBUTION 
BETWEEN TWO CONCENTRIC SPHERES 

Consider two black concentric spheres with 
radii RI and Rz, having constant and uniform 
but unequal temperatures TI and Tz, respectively. 
We wish to determine the temperature distri- 
bution in the gas between the two spheres as a 
function of radius vector r. To simplify the 
problem, it will be assumed at the outset that the 
absorption coefficient of the gas is a constant 
independent of the frequency and thermal state. 
Actually, we could conceivably take x, = urn, 
where a and n are constants, and try different 
values of 12. However, n = 0 appears to give the 
simplest formulation of the problem, which will 
suffice for the present purpose. 

By applying the previous formalism and the 
assumption that the absorption coefficient is a 
constant x, we find, with the additional aid of 
Stefan’s law, that the transfer equation of the 
problem can be written in the form of a Fred- 
holm integral equation of the second kind for the 
unknown function T4: 

4P4 = T#I(&, 5) + ML 01 + T;[d2(12,5) 

- $3(f2, if)] + 2 p T4%{Edlt - ~$1) 

- E1[~‘/(5~ - 6; + v’/(t2 - ~31~ as! (10) 
where 5 = xr, 61 = xR1 and Is = xR2. Further- 
more $1, $2 and $3 are the functions 

&(4, 5) = (5 + 4) Rs(5 - 8) - exp i-(5 - &I 

d& 0 = (5 + $1 Ez(~ - 5) + ew I-(6 - 01 

ML 6) = [.\/(P - r;> - .\/G2 - sg1 

E2[d2 - sg + v%f2 - 531 

+ exp {- 1~46~ - 63 + 145~ - S31> 
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and El(t) and Es(t) are special cases of the 
integro-exponential function En(t) of general 
order n (for the definition, see reference [l] or [2]). 
The term on the left-hand side of equation (10) 
represents the total rate of emission of the ele- 
ment of gas at the point t, the first two terms on 
the right-hand side designate surface contri- 
butions, and the integral term represents the 
contribution from the gas to the total rate of 
absorption of the element of gas at the point 6. 
Because of the nonlinear form of the arguments 
in this integral equation, there is little hope of an 
exact analytical solution. The kernel function 
possesses a logarithmic singularity at the point 
t = 6; therefore, the equation as it stands is 
unsuited for a numerical study. The singular 
behavior of the kernel can be changed, however, 
by performing an integration by parts under the 
integral sign. In so doing, it is to be observed 
that the gas temperature immediately adjacent 
to the two spherical surfaces is not in general 
equal to the surface temperatures themselves in 
the assumed absence of molecular transport 
phenomena, i.e. Ts+ # TI, Tt=8, # Tz. The 
integration by parts reduces then the integral 
equation of the second kind to one of first kind 
for the function dTd/df, i.e. 

KG; E, 51) = sgn (E - 5)(E + E) E2(15 - itI> 

- 
exp[--(lt - Q1 + [2/C? - 8 

- .\/ct2 - 5gl~2MP - g, 

+ d(t2 - tT>l + exp {--[I.@~ - t?) 

+ a2 - s31> (12) 
The kernel of equation (11) has a finite jump at 
the point 6 = 5. This equation is now suited for 
numerical study; results of such a study are 
described subsequently. 

It is clearly seen that equation (11) is satisfied 
identically in the case when the temperature is 
everywhere the same. Also, we note that equa- 
tion (10) agrees with a similar equation derived 

in reference [8] by another method if TI = Ts in 
equation (10) and if the heat generation term 
included in reference [8] is added to equation (10). 
Inspection of equation (10) or (11) shows 
furthermore, that if we are interested in the 
temperature T itself as a function of f, three 
parameters govern the solution, namely 51, 6s 
and Tl/T2. However, the temperature ratio of 
the surfaces does not enter as a parameter, if 
one chooses to consider the function 

(T4 - T,4)/(T,4 - T;). 

In terms of this function equation (10) can be 
written as 

T4 - T; 1 
T,4 - T; = q {42(52r n - M52, t>1 

- Ei[S2 - t:) + .\/(t2 - t:>l> dl (13) 

Equation (13) shows explicitly that only two 
parameters, 51 and 52, influence the solution for 
the function (T4 - Tt)/(Ti - Ti). In this paper 
we choose to discuss the temperature distribu- 
tion itself rather than the function 

(T4 - T;)/(T; - T;t). 

RATE OF HEAT TRANSFER 

Along with the temperature distribution in the 
gas it is of considerable interest to determine the 
net heat-transfer rate qv per unit frequency 
through an element of area with given orienta- 
tion within the gas. If we choose the normal of 
the surface element in question to have the 
(outward) direction of radius vector in the 
atmosphere, q,, can be written as 

Tr12 
q, = 27 J 1,’ cos 0 sin 0 d6’ 

0 
n/z 

- 277 j Z; cos 0 sin f3 dB (14) 
0 

In this formula the first term represents the heat 
flow going in the positive outward direction of 
radius vector, the second term the heat flow 
going in the opposite direction. By applying 
equation (14) to the present problem, one 
obtains the following formula for q (the integral 
of qv over frequency) : 
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q(t) = f uT;‘t2 ((6 + 51)~ Es@ - 51) 

- (f2 - 5953 %a? - sg 

+ P + ~45~ - #I exp I- ~45~ - E31 

- (1 + 5 - 51) exp i--G - C31) 

+ 6 oT$$-~ [[z/(6; - 63 - 145~ - t912 

E3[2/(5: - t;) -t 146~ - S:Il 

- (52 + @E3(!$2 - t) - [I + d/(‘$ - t;) ’ (15) 

+ 145~ - f1”>1 exp {-- [2/E - 63 

+ d/(E” - 5311 + (1 + 52 - 5‘> 

exp [-- (f2 - Ol] 
E2 

+ ; 
s 

$T4L(t!; I, 51) dt 

5 J 

where L([; 6, .$I) is given by 

Lt5; 5, (1) = sgn (5 - 6% + 0 

WI6 - [I) + exp [- (It - @I 

+[vv - %%I - .\/G? - E:)l 

E2[144~ - 43 + 2/(t2 - 5‘31 
I 

(W 

- exp [- (14:~ - c3 + 145~ - @>I 1 
This result is a consequence of the previous 
formulas, because the heat flux q is related to the 
heat input function Q defined by equation (9) as 
follows 

- ;i ;g (qP) = Q = Atot - Etot (17) 

Since equation (15) involves an integral over the 
temperature distribution, the heat flux q is given 
at any point [ once the temperature as a function 
of 6 is known. To calculate q it is therefore 
necessary to solve equation (10) or its equivalent 
[equation (ll)] first. However, equation (10) is 
obtained by setting Q equal to zero. Hence, it 
follows from equation (17) that 

52q(Q = const. (18) 

The simplest form of the constant in equation 
(18) is obtained by letting 6 = [I in equation (15) 
and by rewriting the integral in terms of the 

function (T4 - T:)/(Ti - T$). The resulting 
formula can be reduced to the following form 

s: 4m 
o(T; - Tf) 

= - 4432/<L!; - sg 

E42/(5; - (3-t ((2 + 61)~ E3(82 - h) 

+ exp [- dK-; - 431 - (1 + 52 - 51) 

ew L-G?2 - Ed11 

- 2 
s 

T4 - T’: 
T4 - T4 

2 
1 k?E2k! - fl) 

+ E3k2 - ff) - ~5365 - &)]E d.? 

(19) 

Since the function (T4 - Ti)/(T$ - T$ contains 
only & and Es as parameters it is seen that the 
heat-transfer rate constant written in this form 
depends only on .$I and 52. 

LIMITING SOLUTIONS 

Exact solutions of the equation determining 
the temperature distribution between the two 
spheres can only be obtained by numerical 
methods. However, two exact limiting solutions 
corresponding to optically thin (x + 0) and 
optically thick (X -+ co) conditions can be ob- 
tained in closed form. 

(a) Optically thin gas 
The temperature distribution between the 

two spheres is obtained directly from equation 
(10) by performing the limiting process x + 0. 
This leads to the result 

4 5 - ~‘(5~ - 1;) 

25 

This solution is tantamount to a vanishing gas 
absorption. Note that the formula predicts an 
infinite temperature gradient at 5 = <r when 
Tl # T2, but a zero gradient when TI = Tz. 

Also by taking the limit of equation (19) as 
K -+ 0, one finds that the heat-transfer rate 
constant is 
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(b) Optically thick gas 
For the case of an optically thick gas, the rate 

of heat transfer q is given by the formula [lo] 

d 
q(5) = - $ d? (QT4) 

From equation (18) it follows then that 

(22) 

&T4) = $ 
where A is an integration constant. In the limit 
as x -+ 00 it can be shown readily from equation 
(10) that the boundary conditions are 

x-foe: T=Tl at .$= &, 

and 

T = TZ at 5 = (2. 

By applying these boundary conditions we 
obtain the following exact closed form solution 
for the temperature distribution : 

(23) 

Accordingly, the heat-transfer rate constant is 

f: q(&)/‘J(r: - T;) = 4&&/3(& - 51) (24) 

(c) Reduction to the flat plate case 
The theory developed here contains the plane- 

parallel configuration as a special case. To 
obtain the formulas pertaining to this case, we 
substitute & = 41 -t L and 

4=h+x(O~x,<~) 

into the equations and let .$I + cc ; L is the op- 
tical distance between the plates and x is the 
variable optical distance. For example, by making 
the indicated substitution into equations (20) 
and (23) and taking the limit as 61 --f co, we 
obtain, after some rearrangement, the well- 
known formulas for this configuration 

T4 - T_: 
Thin Gas: T4 _ T4 = 4; 

2 1 

Thick Gas: g&T* = x 
2 1L 

PARAGON OF RESULTS 

In the numerical part of the study, the method 
of undetermined coefficients was selected for 

solving equation (ll), and the equation was 
accordingly programmed and a number of 
different cases computed on an IBM 7094. In all 
cases presented here, the given interval t2 - 51 
was divided into a maximum of 109 equa1 
subintervals. To test convergence of the solution 
as affected by the number of subintervals, the 
problems were also solved using 82 and 55 sub- 
intervals, From these additional calculations it 
was concluded that the accuracy in all the 
presented temperature distributions is better 
than AT/T2 = 0.002. 

Three parameters govern the exact solution 
for the temperature distribution itself, namely, 
the temperature ratio Tl/T2 and the optical radii 
Ii and .$a. In order to exhibit some of the 
pertinent parametric effects, sets of temperature 
profiles with different wall temperature ratios are 
presented: Tl/T2 = 2 (Fig. 2), Tl/Tz = 5 (Fig. 3), 
and TI/Tz = 25 (Fig. 4). In each figure exact 
(numerical) solutions are displayed as unbroken 
lines, and the thin and thick gas limiting solu- 
tions according to equations (20) and (23) are 
shown as broken lines. The different solutions 
shown for each combination of 51 and 52 are to 
be interpreted as follows. The temperature curves 
marked E correspond directly to the &values 
shown on the &scale. Thus, for these solutions 
52 is held fixed at 5s = 10, while 5‘1 varies and 
takes on the values Er = 5, 1, O-1. This curve 
sequence can be explained as a result of varying 
Ri but keeping Rz and the absorption coefficient 
x fixed. Then, to see what happens if x is reduced 
(or increased) by a factor of ten in the cases just 
described, the curves marked O-15 (106) are 
shown. In reducing (increasing) x by a factor of 
ten, the indicated values on the &scale are re- 
duced (increased) by a factor of ten, such that &a 
for this sequence of exact curves is held fixed at 
the value 52 = 1 (100) whereas & takes on the 
values & = O-5, O-1, 0.01 (50, 10, 1). The 
limiting solutions are, by definition, independent 
of x and remain unchanged when the e-scale is 
multiplied by factors of ten. For each fixed 
geometrical arrangement the different curves 
provide a direct indication of how the solution of 
equation (11) is affected by changes in the 
absorption coefficient. Figures Z-4 thus describe 
the effects of the temperature ratio, the geometry, 
and the absorption coefficient on the solution. 
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FIG. 2. Temperature curves for Tl/T2 = 2. 
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FIG. 3. Temperature curves for TI/Tz = 5. 
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25 

FIG. 4. Temperature curves for Tl/Tz = 25. 

The attempts to calculate the lO[ curves were 
not always successful because, when the interval 
52 - 61 is large, the maximum number of sub- 
intervals possible in the program is in general 
not sufficiently large to ensure accurate data. 
In Fig. 3 one accurate 105 curve is displayed; 
extrapolated lot values for the intermediate case 
(62 = 100, 51 = 10) are shown. The extrapolated 
values were obtained from three different 
calculations of the same profile using a different 
number of subintervals (109, 82 and 55) and the 
assumption, in analysing the data, that the con- 
vergence to the correct temperature at a fixed f 
is exponential with respect to the number of 
subintervals. 

In Fig. 4 only one set of numerical solutions 
are shown. It is felt that in this case the assump- 
tion of a constant absorption coefficient is 
strongly limited, and the curves are only shown 
as an indication of trends. 

DISCUSSION AND CONCLUSIONS 
In studying the results presented in the pre- 

vious section, we notice first the apparent effect 
that the optical size of the inner and hotter 

sphere has on the solution. When 51 is small 
compared to 52, the gas temperature decreases 
rapidly within a narrow region close to the inner 
sphere, resembling a boundary-layer effect. 
Concurrent with the rapid variation in the 
temperature close to the inner sphere is a large 
temperature slip at the inner surface, whereas a 
small slip is found at the outer surface. As the 
optical size of the inner sphere becomes larger, 
the gas temperature varies much more gradually 
between the two spheres, and the temperature 
slip at the outer sphere becomes appreciable. 
These general trends in the temperature curves 
can be explained as an effect of the spherical 
symmetry. On the one hand, when 51 is small 
compared to 52, we have a case that can be 
represented by a radiative heat source of small 
but finite dimensions inside a large spherical 
container. The temperature varies rapidly only 
near the source, and the temperature slip is 
consequently substantial at the inner surface. 
On the other hand, when 51 and 52 are nearly 
equal, a nearly plane parallel case is obtained. 
The trends in the temperature curves for these 
cases can be understood by studying previous 
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investigations dealing with the flat plate con- 
figuration [3-6]. 

Next, we shall study the effect the absorption 
coefficient has on any particular solution with 
fixed values of RI and Ra. In the least con- 
spicuous case, when 52 and 51 are relatively close 
together (5,451 = 2), the IOl curve is rather close 
to the limiting thick gas curve, whereas the O*l[ 
curve does not come as close to the limiting thin 
gas curve (see Figs. 2 and 3). The exact numerical 
solutions demonstrate in these cases that the 
limiting thick and the thin gas solutions differ 
roughly by three orders of magnitude in the value 
of the absorption coefficient. Similar results are 
obtained in the flat plate case. 

As we move to higher ratios of 5461, the cal- 
culated exact solutions tend to agree very well 
with the thin gas approximation, especially when 
the temperature ratio is low, see Fig. 2. Inspec- 
tion of the thin gas approximation formula, 
equation (2), reveals, that the temperature 
distribution is independent of 52. Therefore, as 
soon as 6 B (1, the temperature is close to 
the asymptotic value T/T2 = 1. Thus the location 
of the outer sphere surface plays no role for 
the temperature profile in these cases, in agree- 
ment with the concept of a radiative heat 
source inside a large spherical container. For 
a small but finite value of X, the absorption by 
the large body of gas which separates the small 
hotter sphere from the large cooler sphere, 
does not seem to have any appreciable effect 
on the exact curves in these cases. 

The calculated temperature distributions can 
be used to calculate the heat-transfer rate 
constant, and Table 1 shows the value of 
5MM4T: - T$ for the various cases. The 

Table 1. The heat-transfer rate constant &2q(&)/u(T14 
- T#) for various cases 

-__ 

t2 

__--- 
10 

1 

61 

0.1 
1 
5 
@Ol 
0.1 
0.5 

-__ 

C12q(h)/~(T14 - T24) 

Exact numerical 
-~ 

9.28 x 1O-s 
6.65 x 10-l 
9.46 
9.92 x 1O-5 
9.65 x 1O-3 
2.24 x 10-l 

values of the heat-transfer rate constants in the 
limiting cases are not given, since very little 
meaning can be attached to these values. 

It has not been intended here to develop an 
approximate theory for the correlation of the 
data presented. The object has been rather to 
present exact solutions of the transfer equation 
in spherical symmetry, which has been obtained 
by numerical and limiting processes. It is, 
however, possible to develop an approximate 
theory on the basis of the diffusion approxima- 
tion and include temperature jumps at the 
boundaries. The general background for such a 
theory is contained in a paper by Deissler [ll]. 
Another way of building an approximate theory 
would be to use the theory of matched asymp- 
totic expansions. The latter way is probably the 
most appropriate since the approximation can 
then be carried to any desired degree of accuracy, 
at least in principle. 
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RCumC-Le transport d’energie sous forme de rayonnement dans une atmosphere a symetrie spherique 
est discute. Comme application, on a Ctudie le transport entre deux spheres concentriques (possedant 
des surfaces noires) maintenues, a des temperatures uniformes et differentes et separ&es par un gaz ab- 
sorbant et Cmetteur avec un coefficient d’absorption constant. La distribution radiale de la temperature 
du gaz satisfait a une equation integrale de Fredholm de seconde espece. Des solutions exactes sont 
obtenues par une methode numerique, et les solutions limites correspndant aux conditions dune at- 
mosphere optiquement epaisse et optiquement fine sont donn6es sous forme analytique. La distribu- 
tion radiale de la temperature depend fortement du rapport des temperatures des deux surfaces, du 

coefficient d’absorption et des rayons de spheres. 

Zusammenfassung-Der Austausch von Stahlungsenergie in einer Atmosphare mit Kugelsymmetrie 
wird diskutiert. Als Anwendungsbeispiel wird der Austausch zwischen zwei konzentrischen Kugeln 
(mit schwarzen Oberflachen) studiert, die auf verschiedenen, gleichmlssigen Temperaturen gehalten 
sind und deren Zwischenraum von einem absorbierenden und emittierenden Gas mit konstantem 
Absorptionskoeffizienten erftillt ist. Die Gastemperatur entlang eines Halbmessers geniigt einer Fred- 
holm Integralgleichung zweiter Art. Exakte Losungen wurden mit einer numerischen Methode 
erhalten und Grenzlosungen fur optische dicke und diinne Bedingungen sind in geschlossener Form 
angegeben. Die Temperaturverteilung entland eines Halbmessers hlngt stark vom Temperatur- 
verhlltnis der beiden Oberlllchen, dem Absorptionskoeffizienten und den Halbmessern der Kugeln ab. 

AHHOTaL(&iJf-PaCCMaTpABaeTCR nepeHoc JIyWCTOt 3HeprHEI B aTMoc@epe, Iwelouet c@epa- 

qecKyI0 csfMMeTpaIo. B Ka9ecTBe npaMepa wzcjIeayeTccI 06MeH Memay gBy~f4 KoKqeKTpwre- 

CKMMH Ci$epaMH C qepHbIMEl IIOBepXHOCTflMH, I4MeIOUHMH pa3JIWiHyIO paBHOMepHyI0 TeM- 

ItepaTypy, MemAy KOTOpblMkl HaXOHMTCR ~OrJIOlIJalOLl@ H li3JIyYalOlQHi ra3 C IIOCTOflHHbIM 

Koa@jtnqaeKToM nornoqeana. PacnpeneneKue TehinepaTypbI ra3a Bgonb pannyca ygoBneT- 

BOpHTeJIbHO OIIHCbIBaeTCR HHTerpaLNbHbIM ypaBHeHMeM @peArOJIbMa BTOpOrO pOEa. %CJIeH- 

HbIMM MeTOAaMll IIOJIyqeHbI TOYHbIe peUleHHR. B 3aMKHyTOti @OpMe HaaAeHbI peUIeHIlR A;IH 

npeAenbHbIx cnysaeB onTH4ecK5i T~JICT~~~ sf T0~K0t cpew. TeMnepaTypaoe pacnpegeneHHe 

BAOJfb paAHyCa CElJIbHO 3aBHCPT OT OTHOIUeHHR TeMIIepaTyp Ha UOBepXHOCTK C$ep, KO3+ 

@aqneKTa nornoqeKnrr II paAHycoB c+ep. 


